
8 CROSSTALK The Journal of Defense Software Engineering March 2005

Microsoft’s IT Organization Uses PSP/TSP to
Achieve Engineering Excellence

Carol A. Grojean
Microsoft Corporation

Projects today are beset with problems from the very beginning. Many of these problems come from outside the team, be it
over-ambitious deadlines from management, last-minute scope changes from the customer, or not enough resources. But not all
problems can be blamed on these issues; many of the projects’ problems come from within: failure to plan, failure to track
actual progress against the original plan, failure to include changes in the plan, poor estimation, and failure to understand
when effort deviates from the plan. The Personal Software ProcessSM teaches engineers that estimating and planning are a big
part of their job, and that what they predict drives all other efforts. At the Team Software ProcessSM level, we bring the team
together to define their processes and make a detailed plan. The process then requires the team to enforce their commitment as
well as their individual behavior to follow the process to track time, use data, and get high quality.

The success of organizations that pro-
duce software-intensive systems de-

pends on well-managed software develop-
ment processes. Implementing disciplined
software methods, however, is often chal-
lenging. Organizations seem to know what
they want their teams to be doing, but they
struggle with how to do it [1].

Unfortunately, when consistently chal-
lenged with a schedule, the defect elimina-
tion process continually gets pushed later
and later into the development cycle and,
eventually, over-the-wall to test so the engi-
neers can continue to be productive and meet
their schedule-driven goals. Many organiza-
tions fail to truly understand the impact
poor quality has on their ability to meet
schedule commitments.

Peter Russo, general manager for
Microsoft’s information technology (IT)
application architecture group comments
that:

There are two fundamental issues in
most IT organizations today, one
being the ability to accurately pre-

dict a project schedule, and the
other being the quality of the prod-
uct once you are finally done – and
these are two challenges we have to
start addressing today.

Data Analysis and Findings
Most software organizations are facing crit-
ical business needs for better cost and
schedule management, effective quality
management, and cycle-time reduction [2].

In 1994, the Standish Group reported
in their famous “Chaos Report” [3] that
only 16 percent of projects succeed while
31 percent fail and 53 percent are signifi-
cantly challenged, with the average project
running approximately 189 percent over
schedule (see Figure 1). In 2000, while
things appear to be getting a little better, we
still have a ways to go.

Furthermore, the Standish Group cites
that while numbers appear better, that is
not the entire story: many projects are over-
ly estimated.

In a number of focus groups, IT

executives told us that they first get
their best estimate, multiply by two
and then add a half! It should not be
surprising, therefore, that the major-
ity of these successful projects were
already 150 percent over budget
before they began! [3]

Most organizations have a schedule and
a fairly detailed plan, and generally their plan
goes one of two ways: either they have a
development cycle followed by a test cycle
where they expect the engineers to just fix
bugs during the test cycle, or their plan has
the engineers move on to developing the
next set of features, setting aside a little time
in case any bugs come up. In either case, the
amount of time the engineer needs to spend
regressing and fixing defects found by test is
woefully underestimated every time.
Additionally, once a product is released to
the customer, management assumes the
engineer is free to move on to the next proj-
ect or cycle of the product. The plans gen-
erally do not consider that defects from the
first release will take engineers away from
their progress on the second release – this is
how the vicious cycle begins.

The gap of quality code means that
engineers are spending too much time fix-
ing bugs, either from the previous release or
the current release, on code already passed
along to test. In doing so, they cannot make
progress on new work as originally planned.
This conflict creates a tension in the cycle
where there needs to be a balance between
injecting defects and removing them. The
current process of engineer-injecting and
test-removing is not a natural balance: The
system pushes back by surfacing all the
defects that testing cannot find to later in
the cycle. The only solution is to under-
stand that balance has to exist within the
development cycle, which Personal
Software ProcessSM (PSPSM)/Team Software
ProcessSM (TSPSM) helps us understand.

Project Resolution History (1994-2000)

2000

1998

1996

1994

28% 23% 49%

26% 28% 46%

27% 40% 33%

16% 31% 53%

0% 20% 40% 60% 80% 100%

Succeeded

Failed

Challenged

23%

28%

 33%

Figure 1: Project Resolution History [3]

March 2005 www.stsc.hill.af.mil 9

Life at Microsoft
As it turns out, life in Microsoft’s IT organ-
ization is not a whole lot different than
many other IT departments when it comes
to development. Many IT managers face
decreased headcount and budgets with
increasing support costs, as well as projects
with unpredictable schedules and lower
quality than they would like to see. As IT
manager Todd Baumeister puts it:

Today’s projects are estimated and
managed not with data, but on the
gut instinct of the developer – and
with this I have to go to the cus-
tomer with conviction to our proj-
ect schedule and then refute their
asks of wanting more in less time,
and this isn’t a position I want to be
in … I want a predictable schedule
that will demonstrate our ability to
plan for a date and hit that date and
when we deliver the product it will
be of high quality.

Every other IT manager I interviewed
had a similar story to tell, and many added
that they would like to see their team’s
morale increase. Another IT manager stat-
ed that he would like to basically “deliver a
high quality product on a predictable sched-
ule (when we said we would) without any
death marches or dead bodies left behind.”

Fundamental to all was the need to get
developers focusing on features and design
and delivering a high-quality product so
that test can focus on performance, reliabil-
ity, security, and ensuring the customer’s
needs are met, not this finding-fixing-test-
ing loop that exists today.

About two and a half years ago,
Microsoft IT Manager Aidan Waine was on
a plane from Seattle to Reno reading Watts
Humphrey’s book “Winning with
Software.” Waine’s development projects
were out of control with high bug counts,
ever-increasing test cycles and low delivery
predictability. Client satisfaction and engi-
neering team morale were both low. This
book directly addressed these issues,
describing controlled high-quality software
delivery through disciplined, repeatable,
data-driven engineering processes. Waine
bought another 28 copies for his manage-
ment team and clients. He jokes that no one
read the book or took him seriously, so he
went one step further and brought
Humphrey out to Microsoft. Senior man-
agement bought into the experiment – two
development teams were trained in the new
methods, and two TSP projects launched.

Results so far have ranged from good to
amazing. Waine said that the very first proj-

ect he ran in his newly organized team
more than paid for the training. His initial
reaction was, “Wow, we’re giving them two
weeks of training and look what we got
back!” The result of their first project,
though small, was all they needed.

As you see in Figure 2, for 4,255 new
and changed lines of code, Waine’s team
had only five defects from the time the
product went to system integration test
(SIT) to user acceptance test (UAT) to
released to the customer (RTC). The engi-
neers were bored in test – can you imag-
ine that?

When asked what challenges they faced
once they made the decision to pilot or
deploy PSP/TSP, all the managers inter-
viewed were senior enough that they under-
stood that they needed to lead by example,
and that executive support and involvement
is the No. 1 driver in project success. They
understood that what they were asking for
was a change of behavior from the individ-
uals as well as something that goes against
the culture of the organization, not to men-
tion the software industry itself: collecting
your data around time, size, and defects.

For the most part, they also mandated
the change. This understanding and execu-
tive sponsorship sent a common and con-
sistent message that change was expected
and as a result, they faced very little politi-
cal pushback. The biggest administrative
challenge they faced was finding the time to
get the engineers trained. “People don’t
come off the shelf PSP trained,” one man-
ager exclaimed. However, they understood

that this had to happen, and that no time
was going to be a good time. Moreover,
they found it increasingly hard to find
good, available coaches to lead their teams.

Additionally, there was the management
challenge of convincing the business to take
a four-week hit (for training and launching)
with some sort of promissory note that it
would be worth it in the end – a story they
had been sold before. Fortunately, as more
and more projects were finishing up, cus-
tomers began to hear success stories from
their counterparts and asked for the same
results on their IT-driven projects.

“I’m excited about this,” says Microsoft
Chief Information Officer Ron Markezich,
referencing a recent Accenture study titled
“Value Discovery: A Better Way to IT
Investments,” a survey of 100 large
European IT shops that showed astonish-
ing results [4]. Up to 60 percent to 70 per-
cent of most of an IT shop’s budget is
spent on sustainer activities such as support
and fixing bugs. Markezich said:

I’m excited because the potential for
this to not only reduce our product
cycles and increase our quality, but
ultimately freeing up much of our
sustainer activities enables us to
invest more in builder activities that
drive more value to the business.

What Do the Engineers Think?
A little over a year ago, I had the opportu-
nity to launch an internal tools team that
was literally broken down, having just come

Figure 2: TSP Productivity Gains

Microsoft s IT Organization Uses PSP/TSP to Achieve Engineering Excellence

10 CROSSTALK The Journal of Defense Software Engineering March 2005

Team Software Process

off a project that was cancelled after two
and a half years of effort. According to
Software Engineer Vivek Rao:

I had just started at Microsoft when
our team decided to adopt
TSP/PSP. I did not know then, but
would learn later, that the team was
lagging in their interface with cus-
tomers and was not listening to their
needs. The team did the two-week
PSP training of which I was a part.
In the beginning, I was very skepti-
cal of the idea, since it seemed like
too much process to me. I felt it
would stifle innovation. However,
during the training I saw the impor-
tance of spending time to review
my design and code. The satisfac-
tion that I was getting by having
zero defects in compile and an
essentially defect-free program was
invaluable. I also realized that I was
a lot more confident about the code
than I ever was. There was clearly an
idea of design, code, and review
both and be done with it, rather
than keep fixing bugs later on, for-
ever. I quickly realized the contribu-
tion of the PSP process toward
quality of the code.

“It is very hard to convince people to
change until they have to,” said Watts
Humphrey, “and the power of the PSP is
that they see things change effectively” [5].
With PSP, the engineers honestly begin to

see the change and begin to understand that
to do good work you have to be disciplined,
but change is hard. “People want to fight
change and fight the notion of tracking
time, size, and defect information,”
Humphrey said. “Most engineers just want
to write code and don’t perceive the other
phases of the project (planning, design,
reviews and inspections, etc.) as value-
added, though they generally know they are
good things to do.”

That is the good part about PSP/TSP:
earned value helps measure time all the
way through the product development
cycles, and people realize the importance
of planning before design, design before
coding, code reviews and inspections, etc.
They also start seeing little changes right
away – a code compiles without defects
(or many fewer than before) or a test is
virtually defect-free, which is something
they never believed possible before. When
the product gets to test and they are not
scrambling around fixing bugs, they quick-
ly become believers. Furthermore, they do
not spend a lot of time arguing severity or
priority of a bug because they have time to
fix everything.

Vivek stresses this and goes on to say:

The team then went into launching
the project, what TSP calls a launch.
The amount of energy that was
generated during the launch was
amazing – it really gelled the team
together. The launch made the cus-
tomer requirements clear and

helped the team obtain buy-off on
the schedule from the customers. It
also helped me see the big picture of
the project and my dependencies.
During the launch, we also modified
some of the processes to fit our
needs, and it was clear that TSP
could be modified to suit a team’s
needs. We have made small changes
to the process over time to make it
more efficient for us, while at the
same time ensuring quality.

As the project proceeded, I quickly
realized one additional benefit of
TSP: as a newcomer to the team, I
was not familiar with the code base.
I started taking part in many design
and code reviews and because of
this, I learned a lot about the code
from experienced team members.
For a new hire, TSP is an excellent
means to learn about the design and
code of a product in a short period
of time. TSP also generated in the
team a new sense of ownership and
commitment toward the customer
needs. Although this is not a direct
result of TSP, it has resulted in the
team scoring a 10/10 in customer
relations.

To summarize, the proper applica-
tion of PSP leads to an immense
sense of achievement and satisfac-
tion, and TSP furthers this to the
team level, ultimately resulting in
good products.

And the results of their first pilot speak
volumes:
• Ninety-six percent schedule accuracy –

finished two weeks late with three
weeks of added features.

• Delivered 1.36 defects/thousand lines
of code (KLOC) to system test.

• Huge improvement in partner satisfac-
tion.

Specifically, their defect removal profile on
12,253 new and modified LOC looked like
Table 1.

On 12,253 new and modified LOC, the
team spent approximately 584.6 hours in
review and inspection phases of the project
(otherwise known as appraisal cost of qual-
ity), and spent 109.1 hours total for com-
pile, system test, and user acceptance test
phase (otherwise known as failure cost of
quality) for a total of 693.7 hours finding
and removing defects. This represented an
appraisal to failure ratio of 6.361.

Prior to system test, they had removed
921 defects – a yield of 98.6 percent (mean-
ing 98.6 percent of the defects injected into

Table 1: Defect Removal Profile by Phase

the work product prior to system test were
removed prior to system test). If the indus-
try average were to be about 50 percent
(many feel it is not that good, but I will be
conservative) and had this team been aver-
age, then approximately 460 of the 921
defects would have slipped to system test or
later phases. If system test had a 50 percent
yield, then they would have had to remove
at least 230 defects in system test. Time
wise, most teams I coach plan for defects in
system test to take about half a day to find
and fix (on average), meaning they would
have spent 920 hours finding and fixing
defects in system test instead of the 28
hours that they actually spent.

Additionally, another 230 defects
would have slipped to user/beta testing
where, with another 50 percent yield and a
cost of about a day, or eight hours, to find
a fix, you have to find and fix an addition-
al 115 defects at the cost of eight hours
per defect (on average) to find and fix or a
total of another 920 hours. Instead, they
had no defects.

That leaves the product going to the
customer with 115 defects which, on aver-
age, 50 percent of those will be found over
the product lifetime (or a total of 696 hours
to find and fix). That is a difference of 2,536
hours of finding and fixing bugs in our old
way of doing things versus 34 hours they
actually spent (a project savings of 2,502
hours). That is the difference of spending
three-quarters of a week fixing bugs post-
development versus 5.76 weeks for 11 engi-
neers. This is illustrated in Table 2.

What Does the Customer
Think?
If your IT organization is anything like
ours, then you are probably continually
pushing for change – whether it is with
tools or the latest methodology or a new
definition of your project life cycle. You are
constantly striving to figure out how to get
more out of your people for less.

I can only imagine what our internal
customers thought when we approached
them with this new process.

Cyndee Kraiger has been in Microsoft
Operations for more than 11 years, and has
been the recipient of many IT projects in
that time. About 18 months ago, she

pushed for a new tool to manage the oper-
ations for our volume license deliverables.
This tool was to replace an extensive set of
spreadsheets that had become so unman-
ageable that even a small mistake could cost
Microsoft hundreds of thousands of dol-
lars. While this project was the second TSP
project for the Business Unit IT organiza-
tion Kraiger was in, it was the first for her
and she did not really know what to expect.

Kraiger had been through several proj-
ects before as the business owner. She said
that this project had a different level of
engagement than traditional projects from
the very beginning. “More of my time was
required but the content of the meetings
were of high quality.” She said that she was
even given examples of what to expect
from the project up front. “My team was
engaged daily and felt very involved and
committed at all times.”

Other projects, she said, typically start
out with a meeting in the beginning of the
project with some sort of expectation
being set (time, features, cost) and then
another meeting in the end with what was
developed. Of course, compromises hap-
pened along the way, generally without her
knowing it. But with this project, her
expectations were managed all the way
through and at the end of the project, she
was putting the bow on the wrapping, (not
her typical experience). There were no sur-
prises. The final result is in Table 3. The
project was delivered on schedule. As you
see, “I got what I wanted when it was
promised and the product was of high
quality,” said Kraiger.

Summary
It would not be fair to blame all software
problems on software developers. When
we are consistently challenged with a sched-
ule, the process of eliminating defects con-
tinually gets pushed back later and later into
the cycle and, eventually, over-the-wall to
test so that the engineers can continue to be
productive and meet their schedule-driven

goals; this is classic shifting the burden [6].
In this environment, we have our quick

fix of giving the code to the test team to be
fixed. Then we have the unintended conse-
quence of defects coming back to us later
to eventually fix, at the expense of the cur-
rent project, which then falls behind.
However, the pressure to continue to meet
schedule milestones continues, and so the
behavior continues as a project’s schedule
begins to atrophy in its ability to meet
established schedules, quality statements,
and/or features.

It is just too expensive for any organi-
zation to try to test quality in; it cannot be
done. And without being able to accurately
predict our project schedules and resource
needs, we just cannot run our organization.

Jon DeVaan, senior vice president of
Engineering Strategy at Microsoft frequent-
ly references the article “Nobody Ever
Gets Credit for Fixing Problems That
Never Happened” [7]. The article address-
es the reality every manager faces: dedicat-
ing additional effort to either work or
improvement can increase the performance
of any process. The issue at hand is do you
go down the destructive work-harder loop,
where you feel short-term gains despite
long-term consequences, or do you follow
the constructive work-smarter loop, where
you feel short-term pain for long-term
investment in capability?

What strikes DeVaan most about this
article [7] is the story about the BP team
that reduced butane flare-off to zero in
just two weeks, saving $1.5 million per
year at a cost of about $5,000 to imple-
ment, creating a return on investment of
30,000 percent per year. The article
reported that members of the team had
known about the problem and how to
solve it for eight years. They already had
all the engineering know-how they needed
and most of the equipment and materials
were already on site. What had stopped
them from solving the problem long ago?
The only barrier was the mental model

Microsoft’s IT Organization Uses PSP/TSP to Achieve Engineering Excellence

March 2005 www.stsc.hill.af.mil 11

Figure 3: Defect Removal Profile by Phase

Phase Number of
Defects
Into Phase

Yield Defects To
Be Fixed in
Phase

Average
Time to Fix
(each bug)

Total Fix
Time

Actual
Number of
Defects

Actual
Time Spent
by Team

System Test 50% 230 4 hours 920 hours 9 28 hours460
User/Beta Test 230 50% 115 8 hours 920 hours 1 6 hours
Release to Customer 115 50% 58 12 hours 696 hours 0 0 hours
Total 2,536 Hours versus 34 Hours

New Lines of Codes 59,616
Number of defects found in System Test (ST) 42 (0.705 defect density)
Number of defects found in User/Beta Acceptance Test (UAT) 5 (0.084 defect density)
Number of defects found in Production (to date) 9 (0.151 defect density)

Table 2: Comparison of Typical Results

Figure 3: Defect Removal Profile by Phase

Phase Number of
Defects
Into Phase

Yield Defects To
Be Fixed in
Phase

Average
Time to Fix
(each bug)

Total Fix
Time

Actual
Number of
Defects

Actual
Time
by Team

System Test 50% 230 4 hours 920 hours 9 28 hours460
User/Beta Test 230 50% 115 8 hours 920 hours 1 6 hour
Release to Customer 115 50% 58 12 hours 696 hours 0 0 hour
Total 2,536 Hours versus 34 Hours

New Lines of Codes 59,616
Number of defects found in System Test (ST) 42 (0.705 defect density)
Number of defects found in User/Beta Acceptance Test (UAT) 5 (0.084 defect density)
Number of defects found in Production (to date) 9 (0.151 defect density)

Table 3: Illustration of Final Results (Quality)

12 CROSSTALK The Journal of Defense Software Engineering March 2005

(thinking) that there were no resources or
time for improvement, that these prob-
lems were outside their control, and that
they could never make a difference.

DeVaan emphasized that people should
have the courage to change:

Generally, most people know what
the problem is and perhaps even
how to fix it; the difficult part is
just getting people to change.
Everyone recognizes the problem
and oftentimes it gets expressed
over and over again in cynicism.
The true insight is getting every
level of management to under-
stand that they are part of the
problem when they continually
reinforce the work-harder loop.

DeVaan further expressed that it takes a
lot more guts to change the lower in the
management chain you are. “At some point
there has to be a line drawn where any man-
agement above the line is to the point of
negligence for letting the behavior contin-
ue.” He said that we need people to have
the courage to take the heat when the drop
(in productivity) is down, whether it comes
from the board of directors, the chief exec-
utive officer, or the line manager.

We all have to get on the work-smarter
track and recognize that long-term gains
in process improvement do not come
overnight – just as they were not created
overnight.u

References
1. Humphrey, W.S. “A Discipline for

Software Engineering.” 2nd ed. Manu-
script submitted for publication. 2004.

2. Humphrey, W.S. Winning With Soft-
ware: How to Transform Your
Software Group Into a Competitive
Asset. Boston: Addison-Wesley (Pear-
son Education), 2002.

3. Standish Group International, Inc.
The Chaos Report. Standish Group
International, Inc. <www.standish
group.com/sample_research/PDF
pages/chaos1994.pdf>.

4. Curtis, G.A., R. Melnicoff, and Tor
Mesoy. “Value Discovery: A Better
Way to IT Investments.” Outlook
2003, No. 3 <www.accenture.com/
xdoc/en/ideas/outlook/3_2003/pdf/
info_technology.pdf>.

5. Humphrey, W.S. Personal interview.
Aug. 2000.

6. Senge, P., et al. The Fifth Discipline:
Strategies and Tools for Building a
Learning Organization. New York City,
NY: Doubleday, 1994.

7. Repenning, N., and J. Sterman. “No-

body Ever Gets Credit for Fixing
Problems that Never Happened: Cre-
ating and Sustaining Process Improve-
ment.” California Management Review
4 (2001): 64-88 <http://search.epnet.
com/direct.asp?an=5244741&db=
bch&loginpage=Login.asp&site=
ehost>.

Note
1. The appraisal-to-failure ratio is a meas-

ure of the cost of quality. Specifically,
you want to measure the percentage of
time you spend in appraisal phases of
your cycle (such as design and code
reviews and inspections) versus how
much time you spend in failure phases
(such as compile, system test, and cus-
tomer test). Appraisal cost of quality
(COQ) percentage is calculated as 100*
(appraisal time)/(total development
time). The failure COQ percentage is
calculated by taking 100*(failure
time)/(total development time). The
total appraisal to failure ratio is then cal-
culated by taking the percent appraisal
COQ divided by percent failure COQ
(percent appraisal COQ)/(percent fail-
ure COQ).

Team Software Process

About the Author

Carol A. Grojean is a
certified Personal Soft-
ware ProcessSM (PSPSM)
instructor and Team Soft-
ware ProcessSM (TSPSM)
Launch Coach and has

been practicing TSP at Microsoft since
May 2002 when she was the team leader
of the company’s first pilot project.
Grojean was in Microsoft’s IT organiza-
tion for eight years before moving in to
her current role as a member of the com-
pany’s Quality Engineering Practices
organization, helping to drive engineering
best practices throughout the product
group, including piloting PSP/TSP.
Grojean has a Masters of Business in
management information systems and a
Masters of Science in project manage-
ment and is a certified Project
Management Professional.

Microsoft Corporation
One Microsoft WY
28/1230
Redmond,WA 98040
Phone: (425) 706-8903
Fax: (425) 706-7329
E-mail: cscott@microsoft.com

April 4-6
Defense Technical Information

Center (DTIC) Conference
Alexandria, VA

www.dtic.mil/dtic/annualconf/

April 5-7
Federal Office Systems

Exposition (FOSE) 2005
Washington, DC
www.fose.com

April 18-21
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

May 2-6
Practical Software Quality and

Testing (PSQT) 2005
Las Vegas, NV

www.qualityconferences.com

May 14-15
ACM Symposium on Software

Visualization

St. Louis, MO
www.softvis.org/softvis05

May 15-21
27th International Conference on

Software Engineering (ICSE)
St. Louis, MO

www.icse-conferences.org/2005

May 16-20
STAREAST 2005

Orlando, FL
www.sqe.com/stareast

May 23-26
2005 Combat Identification

Systems Conference
Portsmouth, VA

www.usasymposium.com/combatid

COMING EVENTS

